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Introduction  

The use of the prime number series as a way to signal to ET is by now a fairly well-known idea. In the 1997 l m contact, an 

adaptation of the novel [1] by Carl Sagan, radio telescope researchers discovered a signal containing a series of prime 

numbers. This led them to conclude it was a probable communication from ET. Toward the end of the book upon which the 

movie was based, the main character Ellie searches for patterns in ˊ and finds a very long string of 1s and 0s far out in the 

base-11 expansion of ˊ that when arranged in a square of a specific size yields a clear drawing of a circle and its diameter. 

One could say that because of the role that ˊ plays for the circle that she has been given a scheme by which the number is 

rendered self-referent. This could be regarded as a second indication of an ET message. Long before this the idea of 

somehow depicting the Pythagorean Theorem as a message that could be seen from space was fielded at least as far back as 

1900.  

Abstract 

Based on high resolution images from the ESA Mars express and NASA orbiter HiRise cameras, this paper gives new in-depth 

analysis of the remarkable geometric distribution of certain "mounds" or hill -like features in the Cydonia region of Mars. It 

validates the earlier measurements obtained using the lower resolution NASA Viking images, which hinted strongly at artificial 

surface interventions and adds new information regarding the geometry. We describe how those surface features, if artificial, 

provide an elegant and concise way for an intelligent species to transmit to another intelligence evidence that it understands the 

basics of tetrahedral geometry, prime numbers, and the quantum mechanics of the electrons spin, thereby giving additional 

evidence for the possibility of intelligent intervention. We also explore plausible geological explanations for the individual mounds 

and survey the possible natural mechanisms which may have been involved in their unusual and mathematically precise 

positioning. 
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The idea was to draw the appropriate geometric figure on the terrestrial landscape large enough so that it might be detected 

by aliens on the Moon or Mars. A plan for doing so in the Siberian forest, reportedly attributed to Gauss, may date back to 

1820 [2], Combining all three ideas, a geometric figure that would clearly reference a series of prime numbers, represent a 

unique geometric figure such as the Pythagorean Theorem or the geometry of one of the fi ve regular solids such as the 

Tetrahedron, and in addition have a self-referent property, would certainly qualify as a potentially meaningful communication 

intended for ET. 

 

In a previous set of papers [3-5] we displayed in some detail our geometric study of the placement of fi ve mounds or hill-like 

features located in the area known as Cydonia, on Mars. Attention was fi rst drawn to these objects in the 1976 Viking 

spacecraft photos because they exhibited a noticeably higher albedo than surrounding landforms as well as lying in a 

relatively open space with no other similar objects nearby. Below are the mounds labeled from Viking image 35A72, (Viking 

35A72 (1976) with their positions enhanced for ease of location. FIG. 1 and 2 are close ups of this same image (Viking 

35A72 (1976)) with added outlines of triangles indicated. Included are several other mounds which later came under 

consideration. 

 

 

 

FIG. 1. 12 Cydonia Mounds notated; Viking 35A72 (1976). 

 

Although the resolution of these early images is low (47 pixels/meter), aside from their brightness, the apparent isosceles 

triangle EAD also drew attention to the pattern. Using very careful methodology, the indicated geometry appeared to form a 

figure having just exactly the criteria mentioned above, self-reference, an unmistakable reference to the prime number series 

1,2,3,5,7, and an equally unmistakable reference to the geometry of the Tetrahedron. 

 

Although of course such a coincidence might be written off as a freak of unlikely geology, even a hint of such a figure should 

be enough to arouse considerable scientific curiosity. We feel it would be a mistake to ignore the possibility of artificial 

intervention without first engaging in a careful analysis. The data must be checked and checked again, the precision of the 



www.tsijournals.com | November2016 

 
 

3 

 

 
 

mound placements determined, the possibility of arbitrary choice of randomly placed features considered, and geological 

explanations explored. When necessary, methods of procedure for doing this rigorously must be developed. And a serious 

impediment was the low resolution of the Viking images. 

 

Now, however, we have the benefi t of new images. The fi rst is the European Space Agencies, ESA Mars Express satellite 

image H3253_0000_ND3 released in 2006 with a resolution of 13.7 meters/pixel taken recently by the ESA satellite Mars 

Express (13.7 meters/pixel) [6] and more recently NASAs HiRISE satellite image D21_035487_2215_XN_41N009W 

released in 2014 with a resolution of 5 meters/ pixels [7]. These have given us the opportunity to test our original analysis 

and its degree of precision. The present paper gives our results to date. We begin with a general overview of the significant 

features, to be followed in the next section with greater detail as to methods employed and results. 

 

Within carefully measured tolerances (see below) the group of five mounds we term the pentad outlines (1) an isosceles 

triangle whose internal angles match the cross-section of a tetrahedron, (2) right triangles whose internal angles match 

precisely those produced by taking any altitudes of that same isosceles, (3) one of the angles produced twice within the 

isosceles by its altitudes is an angle t=19:5 degrees, which is sometimes called the tetrahedral latitude because when a 

tetrahedron is embedded in a sphere, its base marks that latitude on the sphere, and (4) the five mound configuration can be 

seen to be clearly related to a portion of a classic geometric figure called a square root of 2 rectangle, which has not only 

multiple repetitions of these tetrahedral angles but a history in aesthetic proportions as well, and moreover is the only 

rectangle which, when divided along its center width, produces a replicate of itself and is thereby endlessly self-referent.1 All 

these characteristics are described in ne detail in reference [8]. Finally, analysis of the relative areas of the triangles contained 

within the pentad (and the hexad when mound P is added) shows that they represent the prime numbers 1,2,3,5 and 7. Below 

we place a composite image of the pentad of mounds GEDBA, rotated and cropped from FIG. 1 alongside the idealized 

version within the square root of two rectangles. The letters I, H, F, do not represent mounds but rather the points of 

symmetry in the implied rectangle. Points I, H, A, E, F mark an inverted mirror image of the pentad. Points C and X are key 

locations in the corresponding tetrahedron (FIG. 2). 1 The A4 paper size used in some parts of the world is actually a self-

replication 2  grid.  

 

 

FIG. 2. Comparison of the mound geometry and the angles of the pentad related to the tetrahedron and to the classic 

square root 2 rectangles. (Viking 35A72 (1976)) 
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As the name implies, a square root of two rectangles has a ratio of the long side to the short side equal to 2 . Thus, in the 

above figure if DB has the length of 1 then BA would have the length of 2 . The length of GE is also equal to 2 . In 

addition to the above Viking representation of the pentad from image 35A72 in 1997, depicted below are the corresponding 

images from the Mars Express. FIG. 3 and 4. 

 

 

FIG. 3. Pentad in ESA Mars Express image H3253_0000_ND3 (2006) and Hi Rise satellites. [Available from: 

http://www.esa.int/spaceinimages/Images/2006/09/Cydonia_region_colour_image2] 

 

 

 

 

 

 

 

 

 

 

FIG. 4. Pentad, MRO HiRISE CTX D21_035487_2215_XN_41N009W (2014). [Available from:  

http://viewer.mars.asu.edu/planetview/inst/ctx/D21_035487_2215_XN_41N009W#P=D21_035487_2215_XN_41N009W&

T=2 
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The corresponding images display the mounds as they are with no enhancements. Because of the difference in sun angles, the 

higher resistivity of some of the mounds is not as pronounced as it is in Viking 35A72. 

 

2. Methodology and Analysis 

In our most recent paper we focused only on the pentad of mounds. Here we will include a sixth mound, designated as mound 

P, so our analysis will be on what we call the hexad. We will also give an expanded account of the mound geometry, 

particularly in its relation to the tetrahedron, and the quantum mechanics of the electron spin. The image we used from 

Viking is an orthorectied version. By that it is meant that the at image is portrayed as if shot from directly overhead, even 

though the actual satellite image may not be from directly overhead. The image from the Mars Express satellite used in the 

recent paper [5] was taken almost directly overhead and there was no need for orthorectication. In this paper, we report the 

results of the re measurement of the angles for the triangles in the pentad and the resultant coordinated t (to be defined 

below), from a map projected image that was not from directly overhead. For areas, as small as the ones that we are 

considering there is no significant difference between a map projected image and an orthorectied image. 

 

To avoid arbitrary selection of the points within the mounds where the vertices of the triangles meet, we used a coordinated 

fit, which is implemented by a computer program. To get a visual picture of what the program does, imagine that each mound 

is represented by a rectangle. Within each mound one places a point (initially at the center). A coordinated fit requires that the 

same vertex within any given mound is used for all the triangles having one vertex sharing that mound, not shifted about 

arbitrarily within each mound to accommodate each triangle separately. In that sense of the word the triangles are 

coordinated. That is, their vertices are not placed at arbitrary separate points within each mound with one point for each 

triangle that has a vertex within the mound. Another way of stating this is that the five-sided figure that represents the pen-tad 

is closed. Now what the computer program does is to vary those common vertices away from the centers but within the 

confines of each mound so as to obtain a best possible fit to the ideal angles as to be given below. A precise coordinated fit to 

the ideal angles (within 0.2°) with common vertices lying within the mounds was obtained with 35A72 in 1997, and here we 

report a similar coordinated fit 0 the ideal angles achieved with the Mars Express and HiRise images. In the Appendix we 

present the initial set of angles obtained from the estimated x and y coordinates of the centers of each mound for each of the 

three sets of images as well as the ideal angles. 

 

It is not a given that such a t can be obtained. In fact, in [9,3] we found that it is extremely unlikely given five or more 

randomly placed mounds of size similar to the Cydonia mounds, that such a t to the ideal geometry can be obtained. One 

might ask why did we choose this particular geometry. As explained in the previous papers if one plots the number of right 

and isosceles triangle obtained from a coordinated fi t versus an angle t defined such that the angles in radians for the right 

triangles are ́ /4-t/2, ˊ/2, ˊ/4 + t/2 and for the isosceles, the ideal angles in radians are /́4+ t/2, ˊ/2-t, ˊ/4+t/2, then by far the 

most right and isosceles triangles appear among the Cydonia mounds when t=arcsin (1/3) ( ╔╔╔ 19:5°): In other words the 

Cydonia mounds chose this geometry far above any other. So, given this choice of the t angle we focus on the pentad. 

 

2.1. Prime numbers and the pentad  

Consistent with the idea of a "message", the mound geometry is profoundly pedagogical with respect to the connection 

between the concepts of number and size, both in terms of length and area. Oneôs fi rst experience with numbers is basic 



www.tsijournals.com | November2016 

 
 

6 

 

 
 

counting, not magnitude of length and area. It is almost as if the (hypothetical) builders of the pentad were taking special 

pains to display the basic connection between concepts of number and magnitude of length and area. Consider the following 

images of the pentad of mounds taken from our recent JSE paper [5]. The mounds (GEDBA) are highlighted for clarity. The 

right triangles DBA, BAE, GEA, and DAG are all similar (having the same angles). This is shown explicitly in the diagrams 

below. Having exactly the same side and angle measurements, clearly the triangles GEA and BAE are congruent right 

triangles FIG. 5. 

 

 

 

FIG. 5. Congruent triangles of the pentad. Viking 35A72 (1976). 

 

In the next figure the right triangles DAG and DBA are similar not only to each other but they are also similar to the above 

congruent right triangles FIG. 6 and 7. 

 

 

                                                              
 

                                    FIG. 6. 2 Further similar right triangles,  Viking 35A72 (1976). 
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The next figure shows the related isosceles triangle ADE. This isosceles triangle is the double of the right triangles DBA. 

 

 

 

FIG. 7. Isosceles triangle of the pentad; Viking 35A72 (1976). 

 
 
All  the subsequent features that we will describe follow logically and mathematically from the ideal geometry which their 

placements portray. It is our opinion that those features, if the placement of the pentad of mounds was intentional and not 

natural, display a characteristic of the intelligence that placed them that may best be described by the words pedagogically 

clever. Consider fi rst of all the relative areas of these right triangles. We shall show that the pentad of mounds displays the 

concept of area in a self-referent way and also with a correspondence to the fi rst 4 prime numbers. By self-referent in this 

regard we mean that the area of the pentad, a five-sided figure denied by fi ve mounds, has simultaneously an area of fi ve 

units. To see this and the claim about prime numbers let us take the area of the smallest of the similar right triangles to be one 

unit as shown in the FIG. 8 to the left below. Since the base of the intermediate sized congruent right triangles is twice that of 

the smaller one and its height is the same, its area is of course twice the area. But why is the area of the largest of the four 

similar right triangles three times that of the smallest one? 

That is explained by reference to FIG. 2 and the 2  rectangle. Since the hypotenuse of the smaller right triangle is, from the 

Pythagorean theorem,3  times its base, this implies that the base of the large right triangle GAD is 3  times the base of 

the smaller triangle. The height of the large triangle is the length of the line GA which is the diagonal of the square root of 

two rectangle GHAE (FIG. 2). Since the base of that rectangle is 2  times its height, the diagonal of that rectangle will be 

p3 times its height. Since its height of that rectangle is the same as the smaller triangle ABD, the height GA of the larger right 

triangle will be 3  times that of the small right triangle. Thus, since both the height and the base of the larger triangle are 

3  times that of the smaller triangle the area of the larger right triangle will be 3 times the area of the smaller triangle FIG. 

8. 
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FIG. 8. Relative areas of similar right triangles; Viking 35A72 (1976). 

 

The sizes of these three similar right triangles thus correspond to the first three prime numbers. It is thus all the more 

remarkable as seen in the figure below FIG. 9. 

 

 

 

FIG. 9. Relative area of the pentad; Viking 35A72 (1976). 

 
that the next prime number 5 appears as the area of the entire fi ve-sided pentad. The source of this geometrical wonder (in the 

sense of either extraterrestrial interventions or geological formations) displays this prime number in a self-referent way, 

roughly analogous to the way is described in a self-referent way in the introduction. As seen from FIG. 8. we also have with 

this scale that the obtuse triangles EDB and GED each have unit area. And, since the area of the tetrad of mounds GADE is 4 

we have a self-referent 4-sided figure nested inside a self-referent 5 sided figure. To top this off, since the triad of mounds 

GAD has an area of 3 we have a self-referent 3-sided figure nested within a self-referent 4 sided figure nested with in a self-

referent 5 sided figure. 

 

Before going on to the hexad and the next prime number let us consider lengths. The geometry parallels the basic 1,2,3 

sequence of areas with the same sequence of lengths of pertinent sides of the triangles relative to one another. Let us again 

take the shortest side (BD) of the smallest triangle (ABD) to be 1. Then, with our ideal geometry, the middle side (EA) of the 

middle sized triangle (GEA) is 2, and the longest side (GD) of the largest triangle (GAD) is 3. As the figure below 

emphasizes, in sequence of size of the triangles ABD, GEA and GAD from the smallest to the largest, the three basic aspects 

of the sides of a right triangle: opposite and adjacent to the smaller acute angle, and hypotenuse, are ordered 1,2,3 

sequentially with their side lengths (opposite of ABD, adjacent of GEA, and hypotenuse of GAD) FIG. 10. 
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FIG. 10. Increasing lengths of 1,2,3; Viking 35A72 (1976). 

 

This 1,2,3 sequence is repeated a third time in the ratios of the sides of each similar right triangle of 1 , 2 , 3 . The 

geometry is indeed clever and persistently pedagogical.  

 

2.2 The hexad and the prime number 7 

Let us now consider the consequences of the addition of mound P to produce the hexad of mounds below FIG. 11 and 12. 

Even the two congruent obtuse triangles GEB and BAG participate in this 1,2,3 pattern. Using the BD=1 scale in FIG. 10. 

and the Pythagorean theorem, the lengths of the sides GE, EB, and BG of the GEB and BA, AG, and GB triangle work p out 

to be respectively 1(1 1)+ , 2(2 1)+ , 3(3 1)+ . For the experts, note that the GEB and BAG triangles corresponds in 

quantum mechanics to the addition of angular momentum 1 plus angular momentum 2 to give angular momentum of 3 since 

the magnitude of angular momentum S is ( 1)s s+ . 

 

 

FIG. 11. The Hexad of mounds from Viking 35A72 (1976). 
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We have found in previous work that the placement of this mound leads to an additional right triangle that is strictly 

congruent with the triangles DAG and EAB. The Viking FIG. 12 below displays this explicitly. We were able to obtain a 

coordinated fi t for the hexad of six mounds with the ideal geometry and now fi ve similar right triangles. They are the 

triangles labelled GAD/ABD/EAB/AEG/PGE. The latter three are congruent. There is also an isosceles triangle EDA and 

seven sets of parallel lines PGớEA, PEớGA, PGớDB, GEớAB, GAớEB, DBớEA, and GBớED. Finally, GABE and PGAE form 

two parallelograms. Here we see these properties with the lines below. Since in the units portrayed above, the pentad has an 

area of 5, the hexad has an area of 7. The reason is that the triangle PGE that extends off the pentad to make the hexed is 

congruent to the triangle GEA which in the units portrayed above has an area of 2. Thus, the area of the hexad PGABDE in 

these units is 7, the fi fth prime number. One of the criteria for artificial origin listed in [8] was whether the resulting geometry 

is unproductive, or rich. This propensity toward indicating the prime numbers is one thing that makes the pentad and the 

related 2  rectangle rich. 

 

As a further indication of this propensity, consider fi rst that all the similar right triangles of the pentad have their sides taking 

on the ratios of 1 : 2  : 3 . If we take the smallest of them to be scaled so that BD= 1(=1) then of course itôs other 

two sides are 2 , 3 . Recall that the two congruent right triangles would then have their sides in the ratios of 2  : 4 : 

6 . Now consider the smallest of the similar right triangles. The square of its small side is obviously 1. The square of the 

middle side is 2. Add the square of the short side to the square of the middle side and of course the Pythagorean theorem 

gives us 1+2=3. 

 

 

FIG. 12. Hexad displaying similar right triangles, Viking 35A72 (1976). [Available from: 

(http://www.esa.int/spaceinimages/Images/2006/09/Cydonia_region_colour_image2) 
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The coordinated fi ts obtained with the above cropped portion of the 1997 Viking image 35A72 was repeated with the higher 

resolution Mars Express image. 

 

Now jump to the congruent right triangles. Then starting with the prime number 3 from the sum 1+2, all of the prime 

numbers from 5 through 89 can be obtained by adding the three even numbers 2 or 4 or 6 corresponding to the squares of the 

sides of the middle sized right triangle (which of course satisfy 2+4=6). So, 3+2=5, 5+2=7, 7+4=11, 11+2=13, 13+4=17, 

17+2=19, 19+4=23, 23+6=29, 83+6=89. This prime number generating feature of the 2 : 4 : 6 right triangle runs out 

of steam here since the next prime number is 97=89+8. 

 

Of course this string of successes is simply due to the fact that all of those intervening prime numbers are related to their 

nearest neighbor by the addition of either 2 or 4 or 6. What is rather curious and interesting is the connection between 2,4,6, 

and the Pythagorean theorem applied to our congruent tetrahedral right triangles. This fact lies, of course, in the context of 

the prime numbers 1,2,3,5,7 that we obtain from the areas of the tetrahedral right triangles of the pentad (and hexad) FIG. 13 

and 14. 

 

 

 

FIG. 13. Mars Express hexad image. ESA Mars Express H3253_0000_ND3 (2006). [Available from: 

http://viewer.mars.asu.edu/planetview/inst/ctx/D21_035487_2215_XN_41N009W#P=D21_035487_2215_ 
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XN_41N009W&T=2] 

 

 

FIG. 14. MRO HiRISE hexad image. MRO HiRISE CTX D21_035487_2215_XN_41N009W (2014). 

 

2.3. The tetrahedron and tetrahedral triangles of the hexad 

The remarkable geometrical and prime number properties of the pentad and hexad follow from the corresponding geometrical 

properties of the square root of two rectangles. Those geometrical and prime number properties are a logical outcome of the 

relative placement of the mounds and are not independent of those placements. This would hold true for any subsequent 

theoretical discovery related to those placements. For example, the connection between the pentad and electron spin 

discussed in the next section is such a theoretical discovery and a consequence of an already discovered property of the 

relative placements of the mounds. By contrast, the placement of mound P has both new and supportive consequences for the 

properties of the pentad of mounds. It is new in that it involves a mound separate from the five mounds of the pentad. It is 

supportive in that it not only leads to a coordinated fit with a fifth right triangle similar to the four right triangles of the 

pentad, but it is also placed in such a position as to accentuate the square root of two rectangles inferred from the pentad. The 

figures below demonstrate this explicitly, in the Viking, the Mars express image FIG. 15-17. 

(http://www.esa.int/spaceinimages/Images/2006/09/Cydonia_region_colour_image2) 

 

 

 

FIG. 15. The Mars Express image of the extended 2  rectangular grid. ESA Mars Express H3253_0000_ND3 (2006). 

[Available from:  
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tp://viewer.mars.asu.edu/planetview/inst/ctx/D21_035487_2215_XN_41N009W#P=D21_035487_2215_XN_41N009W&

T=2]. 

 

 

 

FIG. 16. The HiRISE image of the extended 2 rectangular grid. MRO HiRISECTXD21_035487_2215_XN_41N009W 

(2014). 

 

They show not only the rectangular grid in which the pentad is embedded but an extended square root of two rectangular 

grid. The proportions of the triangles involved are connected directly to the value of the angle t which defines the angles that 

appear in the similar right triangles (ˊ/ 4- t/ 2, ˊ/ 2,) and the isosceles triangle ́/ 4+ t/ 2, ˊ/ 4 + t/ 2. As mentioned in the 

introduction, the isosceles triangle has internal angles which match precisely those of the cross-section of a tetrahedron. This 

is seen in the figure below in which the shaded area with vertices ADE corresponds to that triangle FIG. 17. 

 

 

FIG. 17. The Tetrahedron and its isosceles cross section. 
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Now we discuss two further mounds, whose placements bear further intriguing connections to the tetrahedral triangles and 

the tetrahedron. The first mound we discuss is mound M (FIG. 1 and 18). We have obtained coordinated fits that involve this 

mound and all six mounds of the hexad. That coordinated fi t reveals an isosceles triangle PMA that is similar to the triangle 

ADE and of course the cross-section of the tetrahedron. As the three figures below show from the Viking, the Mars Express 

in FIG. 18-20. 

 

 

 

FIG. 18. Mound M with Isosceles PMA Similar to ADE and Mound O with Equilateral OPG; Viking 35A72 (1976). 

 

 

 

FIG. 19. Mars Express image of Mound M with Isosceles PMA similar to ADE and Mound O with Equilateral OPG 

ESA Mars Express H3253_0000_ND3 (2006). 
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(http://www.esa.int/spaceinimages/Images/2006/09/Cydonia_region_colour_image2), and the HiRise satellites 

http://viewer.mars.asu.edu/planetview/inst/ctx/D21_035487_2215_XN_41N009W#P=D21_035487_2215_XN_41N009W&

T=2 coordi-nated fi ts. 

 

 

 

 

FIG. 20. HiRise image of Mound M with Isosceles PMA similar to ADE and Mound O with Equilateral OPG. MRO 

HiRISE.CTXD21_035487_2215_XN_41N009W (2014). 

 

 
not only reveals that the triangles are similar, but also that their respective basesô display the opening angle t; from the shared 

common vertex A, which defines the geometry of the tetrahedron and the tetrahedral angles and triangles. The area of that 

triangle is 9/2 the area of the triangle ADE [10]. This follows from the fact that a) the two triangles are similar and b) the base 

of the triangle PMA q, in units in which BD=1, is PA= 
2

24 2 3 2 / 2 EA+ = = ³. Since the two triangles are 

similar, the height of the larger triangle would also be 3/2  times that of the smaller triangle. The square of this common 

factor is 9/2. 

 

With the ortho rectified Viking data we were able to obtain a coordinated ét that not only displays the above additional 

isosceles PMA but also, including mound O, shows that the triangle OPG is equilateral. This triangle is quite significant in 

terms of its connection with the tetrahedron in FIG. 17. 

 

Since the base PEG for the equilateral has the same length as the base AE for the isosceles cross-section ADE, this means 

that the ratio between the area of the equilateral OPG and the isosceles ADE is precisely the same as the ratio between the 

area of each of the four sides of the same tetrahedron which includes the triangle ADE as its cross-section. Unfortunately, 

even though we were able to obtain with the Mars Express and Hirise images a coordinated fit for OPG with angles very 
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close to the equal angles of 60° we were off by about a half a degree. This discrepancy between the different images may be 

due to the satellite angle: neither the Mars Express nor the HiRise images are strictly speaking orthorectified. However as 

mentioned earlier the Mars Express image was taken almost directly from overhead which at least approximately fits the 

definition of what we mean by an orthorectified image. The HiRise image was map projected, not the same as an 

orthorectified image but close. 

 

2.4. The mound geometry and the electron spin 

As reported in earlier papers [3,5] the right triangles pictured above are of importance in the fundamental physics of the spin 

of the electron (and the quark). It was Goudsmit and Uhlenbeck who in 1925 proposed that the electron has an intrinsic 

angular momentum apart from its orbital angular momentum that it may have in rotating about the nucleus of an atom. In 

1929 Dirac found the relativistic wave equation for the electron bearing his name, confirming the fundamental nature of 

electron spin. His theory showed that the electron spin could be described by a single quantum number s whose value could 

only be s=1=2. The other important aspect of Diracôs equation is that it predicted the existence of the electronôs antiparticle, 

the positron, a particle with the opposite charge of the electron but with the same intrinsic spin. 

 

Let us begin with a naïve picture of the spinning electron as that of a top [11]. In the playful picture below we have two 

pictures of an electron which corresponds to our experiences of a spinning and processing top on a table in the constant 

gravitational field of the Earth. This picture of the electron is naïve in several respects. First of all the electron as far as we 

know has no size. That is, it is a point particle. So how can an object with no size have a spin? The fundamental equation of 

physics that describes the electron and itôs spin is the Dirac equation. In the case in which there are no electric or magnetic 

fields to act on the electron and it is at rest, the Dirac equation tells us that its energy is simply E=mc
2
. This is the same 

energy a particle of mass m would have even if it had no spin. There is no room in this famous equation to account for the 

rotational energy that the electron would have if it had extension like a top [4]. On the other hand if a constant magnetic field. 

 

4
For an ordinary top with spin S and moment of inertia I, the rotational kinetic energy added to E=mc

2
 would equal to S

2
=2I: 

is turned on then the electron picks up an energy over and above mc
2
 even if the electron is at rest. The Dirac equation tells us 

that this energy arises from the orientation energy of the electron with the magnetic field by way of a tiny magnet intrinsic to 

the electron and directly proportional to its spin. So, the electron behaves like a tiny permanent magnet whose orientation 

defines an axis and whose strength is proportional to its rate of spin about that same axis. In our figure the electron is shown 

as having 2 ways of spinning about that axis, one clockwise one counterclockwise. Instead of the gravitational field pointing 

straight up for a real top, we have the electron spinning and processing in a constant magnetic field pointing straight up. The 

peculiar thing about the electron is that the angle that itôs spin axis makes with respect to that constant magnetic field can take 

on only two values. To get a hand on what we mean by orientation use your hand. For the picture on the left you grab that top 

with your right hand in such a way that your four fingers curled around the top in the direction of the arrow. Then the 

orientation of the spin, of the magnet, of the electron points in the direction of your thumb. For the electron to the right if we 

do the same thing with your hand, then your thumb would point down at an angle relative to the vertical, that is to say relative 

to the direction of the constant magnetic field. The thing about the electron, unlike a toy top, is that the angle of the spin axis 

relative to the magnetic field can take on only two values, corresponding to the two directions of your thumb. Furthermore, 

the magnitude of the spin about the axis is fixed and permanent, just like the permanent magnetism of the electron FIG. 21. 
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FIG. 21. Electron spin, naive picture. 

 

Let us translate this into a picture that will allow us to see the relevance of the right triangles that appears five times in the 

hexad. Planckôs constant h plays an important role here. Quantum mechanics stipulates that the magnitude of the electronôs 

spin is given by (S 1) 1/ 2(1/ 2 1) 3 / 2S + = + = . Its magnitude and direction are represented by the red arrows 

in the figure below FIG. 22. The two red arrows correspond to the two possible spin orientations of the electron. The arrow 

that points upward and to the right represents the axis of the electron and in the presence of the magnetic field this arrow 

processes about the z-axis [12]. Its projection about the z-axis is fixed, having only the possible value of + / 2  (the factor 

of 1/2 here authors the description of the electron as a spin-one-half particle). In the picture above this corresponds to the 

purple top. The arrow that points downward to the right represents the axis of the electron and in the presence of the magnetic 

field in the z-direction this arrow processes about the z-axis. Its projection about the z-axis is fixed, having only the possible 

value of - / 2 . In the picture above this corresponds to the blue top. 

 

 

 

FIG. 22. Intrinsic spin angular momentum for electron. 

 

Now even though this picture is taken as representing the dynamical picture of an electron processing and spinning in and out 

of the page in a magnetic field let us view just this cross-section as is pictured. Now consider the two triangles pictured with 
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each of the red arrows corresponding to a hypotenuse, the projection of the spin along the z-axis representing the small side 

of the triangle and the other projection representing the intermediate side of the tri-angle. (From the Pythagorean theorem, the 

magnitude of this other projection, p that is, the dotted line is given by 2 / 2). It is impossible that the electron p can 

have a magnitude of the spin any other value that value of 3 / 2. It is impossible that its projection along the z-axis be 

other than ± / 2  (remember the z-axis represents a direction of a constant magnetic field applied in our lab-oratory about 

which our electron is spinning and processing). It is impossible to increase the spin rate or decrease the spin rate FIG. 23. 

That is a permanent feature of the electron. The lengths of the sides of the two triangles represented are / 2 ( 1 2  3

). The proportions 1 : 2 : 3 correspond precisely to the proportions of the lengths of the sides of the fi ve similar right 

triangles of the hexad. Using the ideal angles of the right triangles of the hexad, the two possible angles of orientation are 

+(ˊ/4- t=2) ╔ 35:3 degrees and -(ˊ/4-t/2) ╔ 35:3 degrees, above and below the horizontal. Let us make this correspondence 

between the spin of the electron and the mound configuration more vivid by using the pictures of the mounds themselves. 

 

 

FIG. 23. Mound geometry and electron spin; Viking 35A72 (1976). 

 

Here we see clearly the precise correspondence between the mound configuration and the electron spin. The short side DB in 

this figure corresponds to the z-axis projection in the previous figure. The circle here in this figure corresponds to the 

processing red arrow in the previous picture and the line AB in this figure corresponds to the dotted line in the previous 

picture. The lengths BD, BA, and AD have the respective ratios of ( 1 : 2  : 3 ). The blending of mound geometry and 

quantum mechanics on the surface of Mars does not end here. 

 

Consider the two equal legs DE and DA of the isosceles triangle pictured in FIG 7. They each process about what would be 

the magnetic field direction DB if we were speaking of a processing electron. In quantum mechanics when two spin-one one 

half particles such as electrons or quarks combine their spins, they can add to an overall spin-zero (S=0) or spin-one (S=1). 

When they combine to spin-zero, there is a net zero magnetism that is produced. However, when the spins combine to give a 

total spin one (S=1), that gives the maximum composite magnetism. In that state the relative orientation of the two spins is 

the same as that between DE and DA, corresponding to an angle of ˊ/2 t=70:5 degrees [13]. In FIG. 24 opening angle is 
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represented by the angle between the two cones. The designation MS=0 indicates that the net spin component about the z-axis 

is zero. The upper blue arrow and the lower process in opposite directions. 

 

 

 

FIG. 24. Composite spin-1 state for 2 spin-one half particles. 

 

In the figure below this is shown in the context of the actual Cydonia mounds (that figure is rotated ˊ/2 relative to the figure 

above). The two individual electrons correspond to the red arrows, giving rise to a total spin of magnitude 2  h 

corresponding to spin 1 ( 2 ( 1) (1 1)s s= + = + represented by both the length and the direction of the yellow 

arrow. Note that the yellow arrow has a zero projection along the z-axis in the figure (along DB) corresponding to MS=0. 

 

The Pauli exclusion principle would forbid such a spin-one state between two electrons if they are in the same orbital. For 

example, 2 electrons in the ground state of helium could only couple to give spin zero not spin 1. But this figure does not 

represent spin zero for which the two blue arrows would be antiparallel rather than at an angle of 70.5 (= ˊ/2-t). So if this 

were to represent some bound state involving two electrons this could only be possible if say one of the electrons is in a 

ground state and the other is in another orbital, say the first excited state. The alternative is that one of the spin one half 

particles is not an electron but a positron, or an anti-electron. In that case, we would have represented here a bound state of an 

electron and a positron corresponding to what is called triplet positronium or ortho positronium. Symbolically it corresponds 

to S1. The designation triplet corresponds to the fact that the diagrams here correspond to only one of three different states in 

which the positronium atom could be found in. In the other two states, not represented by the Cydonia mounds, the two blue 

arrows would be circling around in just one of the cones, either the upper or the lower with the angle between them being 

fi xed again at 70.5° FIG. 25. 
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FIG. 25. Composite spin state displayed by mounds; Viking 35A72 (1976). 

 

There is a fourth composite spin state for the positronium system. In that state the total spin is zero (S=0). The diagram [13] 

representing it is given in the figure below in FIG. 26. 

 

 

 

FIG. 26. Composite spin state for total spin zero. 

 

As the arrows in the figure indicates the two electron spins are in opposite directions so that the spins cancel to zero. One 

precesses on the top cone and the other on the bottom cone. Strictly speaking if the mound geometry here were to represent a 

spin-zero composite, then line DE would point in the opposite direction to line DA as in the figure above. However, there is 

an indirect way in which the spin-zero composite is represented by the side EA. First note that the length of each spin vector 

for each electron is 3 /2. Thus, magnitude of the total length of the double arrow is 3 . The angle that each of these 

double 


