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Introduction

The use of the prime number series as a way to signal to ET is by now a fairknasth idea. In the 1997 | montact, an
adaptation of thenovel [1] by Carl Sagan, radio telescope researchers discovered a signal containing a series of prime
numbers. This led them to conclude it was a probable communication from ET. Toward the end of the book upon which the
movie was based, the main character Elieseeches f or patterns in °~ and finds a v
basel 1 expansion of =~ that when arranged in a square of a
One could say that bysfoathesiecle thdt she has beengivem a schemé by whicp the number is
rendered selfeferent. This could be regarded as a second indication of an ET message. Long before this the idea of

somehow depicting the Pythagorean Theorem as a message thabesgen from space whslded at least as far back as
1900.
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The idea was tordw the appropriate geometric figuna the terrestrial landscape large enough so that it might be detected
by aliens on the Moon or Mars. A plan for doing so in the Sibdoesest, reportedly attributed to Gauss, may date back to
1820 [2], Combiningall three ideas, a geometric figuteat would clearly reference a series of prime numbemesent a
unique geometric figursuch as the Pythagorean Theorem or the geometon®fof thefive regular solids such as the
Tetrahedron, and in addition have a geferent property, would certainly qualify as a potentially meaningful communication
intended for ET.

In a previous set of papers-5 we displayed in some detail our geetric study of the placement fife mounds or hillike

features located in the area known as Cydonia, on Mars. Attentiorfirsaglrawn to these objects in the 1976 Viking
spacecraft photos because they exhibited a noticeably higher albedo thandngdandforms as well as lying in a
relatively open space with no other similar objects nearby. Below are the mounds labeled from Viking image 35A72, (Viking
35A72 (1976) with their positionsnearced for ease of locatiokIG. 1 and 2 are close ups atis same image (Viking

35A72 (1976)) with added outlines of triangles indicated. Included are several other mounds which later came under
consideration.

FIG. 1.12 Cydonia Mounds notated; Viking 35A72 (1976).

Although the resolution of thesearly images is low (4pixels/meter), aside from their brightness, the apparent isosceles
triangle EAD also drew attention to the pattern. Using very careful methodology, the indicated geometry appeared to form a
figure having just exactly the criteria mentionabove, selfeference, an unmistakable reference to the prime numbes seri

1,2,3,57, and an equally unmistakable reference to the geometry of the Tetrahedron.

Although of course such@incidence might be written offs a freak of unlikely geology, eve hint of such &gure should
be enough to arouse considerable sdientiuriosity. We feel it would be a mistake to ignore the possibility of artificial

intervention without first engaging in a careful analysis. The data must be checked and chatketthe@grecision of the
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mound placements determined, the possibility of arbitrary choice of randomly placed features considered, and geological
explanations explored. When necessary, methods of procedure for doing this rigorously must be developedridusl a

impediment was the low resolution of the Viking images.

Now, however, we have the béineof new images. Thérst is the European Space Agencies, ESA Mars Express satellite
image H3253 0000 _ND3 released in 2006 with a resolution of hatérs/pixel taken recently by the ESA satellite Mars
Express (13.7 meters/pixel) [6] and more recently NASAs HIRISE satellite image D21 035487 2215 XN_41N009W
released in 2014 with a resolution of 5 met@igtls[7]. These haveiven us the opportunitio test our original analysis

and its degree of precision. The present paper gives our results to date. We begin with a general overview &ttm signi

features, to be followed in the next section with greater detail as to methods employed and results.

Within carefully measured tolerances (see below) the group of five mounds we term the pentad outlines (1) an isosceles
triangle whose internal angles match the cisesstion of a tetrahedron, (2) right triangles whose internal angles match
precisely thoseroduced by taking any altitudes of that same isosceles, (3) one of the angles produced twice within the
isosceles by its altitudes is an anggel9:5 degrees, which is sometimes called the tetrahedral latitude because when a
tetrahedron is embedded in ghsre, its base marks that latitude on the sphere, and (4) the five mound configuration can be
seen to be clearly related to a portion of a classic geonfigiiee called a square root of 2 rectangle, which has not only
multiple repetitions of these tetradral angles but a history in aesthetic proportions as well, and moreover is the only
rectangle which, when divided along @snterwidth, produces a replicate of itéahd is thereby endlessly se#fferentl All

these characteristics are describederdetail in reference [8]. Finally, analysis of the relative areas of the triangles contained
within the pentad (and the hexad when mound P is added) shows that they represent the prime numbers 1,2,3,5 and 7. Below
we place a composite image of the permw&anounds GEDBA rotated and cropped from FlG.alongsidethe idealized

version within the square root of two rectangles. The lettek$, -, do not represent mounds but rather the points of
symmetry in the implied rectangle. Points I, H, A, E, F namknverted mirror image of the pentad. Points C and X are key

locations in the arresponding tetrahedrofIG. 2). 1 The A4 paper size used in some parts of the world is actually-a self

replication\/E grid.

FIG. 2.Comparison of the mound geometry and the angles of the pentad related to the tetrahedron and to the classic
square root 2rectangles. (Viking 35A72 (1976))
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As the name implies, a square root of @atangleshas a ratio of the long side to the shadesqual to«/z Thus, in the

abovefigure if DB has the length of 1 then BA would have the Iength\,@. Thelength of GE is also equal tQ/z In

addition to the above Viking representation of the pentad from image 35A72 in 1997, depictecteethe corresponding
imagesfrom the MarsExpressFIG. 3 and4.

FIG. 3. Pentad in ESA Mars Express image H3253 0000_ND3 (2006) and Hi Rise satellifasailable from:
http://www.esa.int/spaceinimages/Images/2006/09/Cydonia_region_colour_image2

HIRISE IMAGE 2014

FIG. 4.Pentad, MRO HIRISE CTX D21_035487_2215 XN_41NO09W (2014Available from:
http://viewer.mars.asu.edu/planetview/inst/ctx/D21_035487_2215 XN_41NO09W#P=D21_ 035487_2215 XN_41NO09W&
T=2
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The corresponding images display the mounds as they are witthana@ments. Because of the difference in sun angles, the

higherresistivityof some of the mounds is not as pronounced as it is in Viking 35A72.

2. Methodology and Analysis

In our most recent paper we focused only on the pentad of mounds. Here we will include a sixth mound, designated as mound
P, so our analysis willdon what we call the hexad. We will also give an expanded account of the mound geometry,
particularly in its relation to the tetrahedron, and the quantum mechanics of the electron spin. The image we used from
Viking is an orthorectied version. By thatist meant that the at image is portrayed as if shot from directly overhead, even
though the actual satellite image may not be from directly overhead. The image from the Mars Express satellite used in the
recent paper [5] was taken almost directly overheatithere was no need for orthorectication. In g@aper,we report the

results of the rameasurement of the angles for the triangles in the pentad and the resultant coordinated tf{tede de
below), from a map projected image that was not from directlgrhead. Fomareas,as small as the ones that we are

considering there is no sidimiant difference between a map projected image and an orthorectied image.

To avoid arbitrary selection of the poingthin the mounds where the V¥iees of the trianglemeet, we used a coordinated

fit, which is implemented by a computer program. To get a visual picture of what the program does, imagine that each mound
is represented by a rectangle. Within each mound one places a point (iattihkycenter). A coordated ft requires that the

same vertex within any given mound is used for all the triangles having one vertex sharing that mound, not shifted about
arbitrarily within each mound to accommodate each triangle separately. In that sense of the word tles @i@ngl
coordinated. That is, their vertices are not placed at arbitrary separate points within each mound with one point for each
triangle that has a vertex within the mound. Another wastating this is that théive-sidedfigure that represents the pé¢ad

is closed. Now what the computer program does is to vary those common vertices awdyefrmenters but within the
confines of each mounasas to obtain a best possibleti the ideal angles as to be giveelow. A preciseoordinated fito

the ideal angles (within O2Rwith common vertices lying within the mounds was obtained with 35A72 in 1997, and @dere w
report a similar coordinated fit the ideal angles achieved with the Mars Express and HiRise images. In the Appendi
present the initial set of angles obtained from the estimagedtly coordinates of the centers of each mound for each of the
three sets of images as well as the ideal angles.

It is not a given that such acan be obtained. Ifact, in [9,3] we found that it is extremely unlikely givefive or more

randomly placed mounds of size similar to the Cydonia mounds, that such a t to the ideal geometry can be obtained. One
might ask why did we choose this particular geometry. As explained in the prevjmers [faone plots the number of right

and isosceles triangle obtained from a coordinfitedersus an angledefined such that the angles in radians for the right
triangles aré 4-t/2,” / 2/, 4 2 and for/the isosceles, the ideal angles in racdiems/4+1/2, " 2-t , © théntby farzhe

most right and isosceles triangles appear among the Cydonia moundd=veinesin (1/3 ) 19:5): jnjofper words the

Cydonia mounds chose this geometry far above any othggivn this choice of theande we focus on the pentad.

2.1. Prime numbers and the pntad
Consistent with the idea of a "message”, the mound geometry is profoundly pedagogical with respect to the connection

between the concepts of number and size, both in terms of length an@® aresaferst experience with numbers is basic
5
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counting, not magnitude of length and area. It is almost as if the (hypothetical) builders of the pentad were taking special
pains to display the basic connection between concepts of humber and magnitudéhadridrayea. Consider the following
images of the pentad of mounds taken from our recent JSE paper [5]. The mounds (GEDBA) are highlighted for clarity. The
right triangles DBA, BAE, GEA, and DAG are all similar (having the same angles). This is showgitigxplithe diagrams

below. Having exactly the same side and angle measurements, clearly the triangles GEA and BAE are congruent right
trianglesFIG. 5.

FIG. 5. Congruent triangles of the pentad Viking 35A72 (1976).

In the next fgurethe right triangles DAG and DBA are similar not only to each other but they are also similar to the above
congruent right trianglesIG. 6 and 7.

FIG. 6. 2 Further similar right triangles, Viking 35A72 (1976).
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The next fgureshows the related isosceles triangle ADE. This isosceles triangle is the double of the right triangles DBA.

FIG. 7. Isosceles triangle of the pentad; Viking 35A72 (1976).

All the subsequent features that we will describe follow logically and mathematically from the ideal geometry which their
placements portray. It is our opinion that those features, if the placement of the pentad of mounds was intentional and not
natural, disfay a characteristic of the intelligence that placed them that may best be described by the words pedagogically
clever. Considefirst of all the relative areas of these right triangles. We shall show that the pentad of mounds displays the
concept of arein a selfreferent way and also with a correspondence tditee4 prime numbers. By seléferent in this

regard we mean that tteea of the pentad, fave-sidedfigure deniedby five mounds, has simultaneously an aredi\af

units. To see this anddttlaim about prime numbers let us take the area of the smallest of the similar right triangles to be one
unit as shown in thel&. 8 to the left below. Since the base of the intermediate sized congruent right triangles is twice that of
the smaller one anits height is the same, its area is of course twice the area. But why is the area of the largest of the four

similar right triangles three times that of the smallest one?
That is explainedYyoreference to k5. 2 and the\/z rectangé. Since the hypotenuse of the smaller right trianglfeas the

Pythagorean theorem@ times its base, this implies that the baseheflarge right triangle GAD i3/§ times the base of

the smallettriangle. The height of the large triangle is the length of the line GA which is the diagonal of the square root of

two rectangle GHAE (K. 2). Since the base of that rectanglex/ié times its height, the diagonal of that rectangik be
p3 times its height. Since its height of that rectangle is the same as the smaller triangle ABD, the height GA of tightarger

triangle will be \/§ times that of the small right triangl€hus, since both the height and the base of the larger triangle are

\E times that of the smaller triangle the area of the larger right triangle will be 3 times the area of the smalleFl@angle

8.
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FIG. 8. Relative areas of simila right triangles; Viking 35A72 (1976).

The sizes of these three similar rightigles thus correspond to thesfi three prime numbers. It is thus all there
remarkable as seen in tfigure belowFIG. 9.

FIG. 9. Relative area of the pentadViking 35A72 (1976).

that the next prime number 5 appears as the area of thefargistded pentad. The source of this geometrical wonder (in the
sense of either extraterrestrial interventions or geological formations) displays this prime numissifirefarentway,
roughly analogous to the way is described in argd#frent way in th introduction. As seen from FIG. &e also have with
this scale that the obtuse triangles EDB and GED each have unit area. And, since the area of the tetrad GiAD&UITM

we have a selfeferent 4sidedfigure nested nside a seffeferent 5 sidedigure. To top thisoff, since the triad of mounds
GAD has an area of 3 weabe a selfeferent3-sidedfigure nested \ithin a selfreferent 4 sidedigure nested within aself
referent5 sidedfigure.

Before going on to the hexad and the next prime number let us consider lengths. The geometry parallels the basic 1,2,3
sequence of areas with the same sequence of lengths of pertinent sides of the triangles refetiaadther. Let us again

take the shortest side (BD) of the smallest triangle (ABD) to be 1. Then, with our ideal geometry, the middle side €EA) of th
middle sized triangle (GEA) is 2, and the longest side (GD) of the latgangle (GAD)is 3. As the figure below
emphasizes, in sequence of size of the triangles ABD, GEA and GAD from the smallest to the largest, the three basic aspects
of the sides of a right triangle: opposite and adjacent to the smaller acute angle, and hypotenuse, are ordered 1,2,3
sequentially with their side lengths (opposite of ABD, adjacent of GEA, and hypotenuse ofREA.[1)0.
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FIG. 10.Increasing lengths of 1,2,3; Viking 35A72 (1976).

This 1,2,3sequence is repeated a third time in the ratios of the sides of each similar right trian@e 0{5 \/5 The

geometry is indeed clever and persistently pedagogical.

2.2 Thehexad and the prime number7

Let us now consider the consequences of the addition of mound Pdiacprthe hexad of mounds beléWG. 11 and 12.

Even the two congruent obtuse triangles GEB and BAG participate in this 1,2,3 pattern. Using thecBles3aFIG. 10.

and the Pythagorean theorem, the lengths of the sides GE, EB, and BG of the GEB and BA, AG, and GB triangle work p out

to berespectively\/1(1+ 1), \/2(2+ 1), \/3(3+ 1). For the expertsjote that the GEB and BAG triangles corresponds in

guantum mechanics to the addition of angular momentum 1 plus angular momentum 2 to give angular momentum of 3 since

the magnitude of angular moment&is Js( s+1).

FIG. 11. The Hexad of mounds from Viking 35A72 (1976).
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We have found in previous work that the placement of this mound leads to an additional right triangle that is strictly
congruent with the triangles DAG and EAB. The VikinllsF 12 below displays this explicitly. We were able to obtain a
coordinatedfit for the hexad of six mounds with the ideal geometry and fioev similar right triangles. They are the
triangles labelled GAD/ABD/EAB/AEG/PGE. The latter three are congruenteTiBealso an isosceles triangle EDA and
sevens et s of parall el | i nes PGG&EAA aRdB 8EDARInally, GABERNd PGAEGANS , GA
two parallelograms. Here we see these properties with the lines below. Since in the units portrayetieapentad has an

area of 5, the hexad has an area of 7. The reason is that the triangtha®@gend®ff the pentad to make theexedis

congruent to the triangl@EA which in the units portrayed above has an area of 2., Theisirea of the hexad3ABDE in

these units is 7, thigfth prime number. One of the criteria for &ial origin listed in [8] was whether the resulting geometry

is unproductive, or rich. This propensity toward indicating the prime numbers is one thing that makes thengetitad

relatedy'2 rectangle rich.

As a further indication of this propensity, consifiest thatall the similar right triangles of the pentad have their sides taking
on the ratios of\ﬁ:\/? \/§ If we take the smallest of threto be scaled so that BD= 1(/5.) then of cour se
two sides arey 2 , V@ Recallthat the two congruent right triangles would then have their sides in the raﬁ& of\/Z:

\/6. Now consider the smallest of the similar right triangles. The square of its small siodously 1. The square of the

middle side is 2. Add the square of the short side to the square of the middle side and of coursagbecByttheorem
gives us 1+2=3.

FIG. 12.Hexad displaying similar right triangles, Viking 35A72 (1976)[Available from:

(http://www.esa.int/spaceinimages/Images/2006/09/Cydonia_region_colour_image?2)

10
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The coordinatedits obtained with the above cropped portion of the 1997 Viking image 35A72 was repeated with the higher
resolution Mars Express image.

Now jump to the congruent right triangles. Then starting with the prime number 3 from the sum 1+2, all of the prime
numbers from 5 through 89 can be obtained by adding the three even numbers 2 or 4 or 6 corresponding to the squares of the
sides of the middle ®ed right triangle (which of course sy 2+4=6). So, 3+2=5, 5+2=7+4=11, 11+2=13, 13+4=17,

17+2=19, 19+4=23, 23+6=29, 83+6=8%is prime number generating feature of ﬂ;(é: \/Z: \/6 right triangle runs out

of steam here since the next prime number is 97=89+8.

Of course this string of successes is simply due to the fact that all of those intervening prime numbers are related to their
nearest neighbor by the addition of either 2 @r 4. What is rather curious and interesting is the connection between 2,4,6,
and the Pythagorean theorem applied to our congruent tetrahedral right triangles. This fact lies, of course, in thé context o
the prime numbers 1,2,3,5,7 that we obtain fromdteas of the tetrahedral right tigges of the pentad (and hexdes. 13

and 14

FIG. 13.Mars Express hexad image. ESA Mars Express H3253_0000_ND3 (20(8)ailable from:
http://viewer.mars.asu.edu/planetview/inst/ctx/D21_035487_2215_ XN_41N009W#P=D21_035487_2215

11
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XN_41NO09W&ET=2]

> DIAGRAM OF GROUND PATTERN COPYRIGHT TO SPSR 2016
o7 P e COURTESY NASAUPLIUNIVERSITY OF ARIZONA
B G HIRISE IMAGE 2014
S 3 b ¢ RESOLUTION
B

5 METRES/PIXEL

FIG. 14 MRO HiRISE hexad image. MRO HIiRISE CTX D21_035487_2215 XN_41NO09W (2014).

2.3. The tetrahedron and tetrahedral triangles of the hexad

The remarkable geometrical and prime number properties of the pentad and hexad follow from the corresponding geometrical
properties of the square root of twectanglesThose geometrical and prime number properties are a logical outcome of the
relative pacement of the mounds and are not independent of those placements. This would hold true for any subsequent
theoretical discovery related to those placements. For example, the connection between the pentad and electron spin
discussed in the next sectionssch a theoretical discovery and a consequence of an already discovered property of the
relative placements of the mounds. By contrast, the placement of mound P has both new and supportive consequences for the
properties of the pentad of mounds. It is navthat it invdves a mound separate from theefimounds of the pentad. It is
supportive in that it not only leads #ocoordinated fit with a fiih right triangle similar to the four right triangles of the

pentad, but it is also placed in such a posiéisrio accentuate the square root of tactangles inferred from the pentad. The

figures below demonstrate this explicitly, in the Viking, the Mars express iffgel517.
(http://www.esa.int/spaceinimages/Images/2006/09/Cydonia_region_colour_image2)

ESA IMAGE COURTESYS
EUROPEAN SPAGE AGE!

FIG. 15.The Mars Express image of the extended/a rectangular grid. ESA Mars Express H3253_0000_ND3 (2006).

[Available from:

12
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tp:/Iviewer.mars.asu.edu/planetview/inst/ctx/D21_035487_ 2215 XN_41NO09W#P=D21 035487 2215 XN_41NO09W&
T=2].

CYDONIA ON MARS
COURTESY OF NASA/
JPL/UNIVERSITY OF
ARIZONA

MAP PROJECTED HIRISE
IMAGE D21_035487_2215

FIG. 16.The HIiRISE image of the extended 2 rectangular grid. MRO HIRISECTXD21 035487 2215 XN_41NO09W
(2014).

They show not only the rectangular grid in which the pentad is embedded but an extended square root of two rectangular

grid. Theproportions of the triangles involved are connected directlyagoséiue of the angle t which deéis the angles that

appearint he si mi |l ar 4#A-it/g h2,) dand theaiBogreles giangle/ / /24 |  42. As mentioned in the

introduction, the isosceles triangle has internal angles which match precisely those of tseatrosf a teahedron. This

is seen in théigure below in which the shaded area with vertices ADE corresponds to that trid@gle?.

B

Tetrahedron
= Cross-section A
EX = AXIis

FIG. 17.The Tetrahedron and itsisosceles cross section

13
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Now we discuss two further mounds, whose placements bear fimttiguing connections to the tetrahedral triges and

the tetrahedrorirhe first mound we discuss is mound MIG. 1 and 18) We have obtaied coordinated # that involve this
mound and all six mounds of the hexad. That coordin@tedveals an isosceles triangle PMA that is similar to the triangle
ADE and of course the crosgction ofthe tetrahedron. As the thréigures below show frm the Viking,the Mars Express

in FIG. 1820.

VIKING IMAGE (1976)

FIG. 19. Mars Express image of Mound M with Isosceles PMA similar to ADE and Mound O with Equilateral OPG
ESA Mars Express H3253 0000 _ND3 (2006).
14
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(http://www.esa.int/spaceinimages/Images/2006/09/Cydonia_region_colour_imagethd  the HiRise satellites
http://viewer.mars.asu.edu/planetview/inst/ctx/D21_035487_2215_ XN_41NOO9W#P=D21_035487_2215 XN_41NO09W&

T=2 coordinatedfits.

CYDONIA ON MIARS
COURTESY OF NAsSA/

JPL/UNIVERSITY OF
ARIZONA

MAP PROJECTED HIRISE
IVIAGE D21_035487_2215

FIG. 20. HiRise image of Mound M with Isosceles PMA similar to ADE and Mound O with Equilateral OPG. MRO
HIRISE.CTXD21_035487_2215 XN_41NO09W (2014).

not only reveals that the triangles are similar, shdradt al s
common vertex A, which defes the geometry of the tetrahedron andtéiikahedral angles and triangles. The area of that

triangle is 92 the area of the triangle ADE [107his follows from the fact that a) the two triangles are similar and b) the base

2
of the triangle PMA q, in units invhich BD=1, is PA= \l42 +\/§ ﬁ\/_Z #/_2 EA. Since thetwo triangles are

similar, the height of thearger triangle would also be\”z@ times that of the smaller triangle. Theuage of this common

factor is 92.

With the ortho rectigd Viking data we were able mbt ai n a coordinated ¢ét that not
isosceles PMA but also, including mound O, shows that the triangle OPG is equilEtiésdriangle is quite signifant in

terms of its conndmn with the tetrahedron in FIA7.

Sincethe base PEG for the equilateral has the same length as the base AE for the isoscaestionogsDE, this means
that the ratio between the area of the equilateral OPG and the isoscelds piREisely the same as thdigebetween the
area of each ofhe four sides of the same tetrahedron which includes the triangle ADE as itsexrtisa.Unfortunately,

even though we were able to obtain with the Mars ExpredsHirise images a&oordinated fi for OPG with angles very

15
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close to the equal angles &3° we were offby about a half a degree. This discrepancy betweedifffezent images may be
due to the satellite angle: neither the Mars Express nor the HiRise integstiely speaking orthorect#d. However as
mentioned earlier the Mars Expressame was taken almost directly from overhead which at kggstoximately fis the

definition of what we mean by anrtborectified image. The HiRise image was map projectaast the same as an

orthorectifed image but close.

2.4.The mound geometry and theelectron spin

As reported in earlier papef3,5] the right triangles pictured above are of importance in the fundamental physics of the spin

of the electron (and the quark). It was Goudsmit and Uhlenbeck who in 1925 proposed that the electron hasian intr
angular momentum apart from its orbital angular momentum that it may have in rotating about the nucleus of an atom. In
1929 Dirac found the relativistic wave equation for #iectron bearing his name, canfing the fundamental nature of

electron sp. His theory showed that the electron spin could be described by a single quantum number s whose value could
only be s=1=2. The other important aspect of Diradeds equ

the positron, garticle with the opposite charge of the electron but with the same intrinsic spin.

Let us begin with a naive picture of the spinning electron as thatay HL1]. In the playful picture below we have two

pictures of an electron which corresponds to experiences of a spinning apdocessingop on a tablén the constant
gravitational feld of the Earth. This picture of the electron is naive in several respects. First of all the electron as far as we
know has no size. That is, it is a point parti@e. how can an object with no size have a spin? The fundamental equation of
physics that describes the el ectron an deafendeectrk primagndtic t h e
fields to act on the electron and it is at rest,Dirac equation tells us that its energy is simply E&ridis is the same

energy a particle of mass m would have even if it had no spin. There is no room in this famous equation to account for the

rotational energy that the electron would have if it Bai¢nsion like a top4]. On the other hand if a constant magnetic field.

*For an ordinary top with spin S and moment of inertia I, the rotational kinetic energy added foweeacequal to $21:

is turned on then the electron picks up an energy avembove nfeeven if the electron is at rest. The Dirac equation tells us
that this energy arises from the orientation energh®flectron with the magnetiefd by way of a tiny magnet intrinsic to
the electron and directly proportional to its sgsu, the electron behaves like a tiny perer@nmagnet whose orientation
defines an axis and whose strength is proportional to its raterofibput that same axis. In digure the electron is shown

as having 2 ways of spinning about that axis, one @lsgkone counterclockwisénstead of the gravitationaleld pointing
straight up for a real top, we have the electron spinningpamckessingn a constant magneticeld pointing straight up. The
peculiar thing about the electron is that the angleithatd s s p i n a Xécsto thatchrstant magnetteldl cae take

on only two values. To get a hand on what we mean by orientation use your hand. For the picture on the left you grab that top
with your right had in such a way that your fournfjes curled around the top in the direction of the arrow. Then the
orientation of the spin, of the magnet, of the electron points in the direction of your thumb. For the electron toiftveeright
do the same thing with your hand, then your thumb wouldtglmwn at an angle relative to the vertical, that is to say relative
to the diretion of the constant magneti@li. The thing about the electron, unlike a toy top, is that the angle of thaxipin
relative to the magneticdid can take on only two uags, corresponding to the two directions of your thuRusthermore,

the magnitudef the spin about the axis isxéid and permanent, just like the permanent magnetism of the elE6B0oR1.
16
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FIG. 21.Electron spin, naive picture

Let us translatehis into a picture that will allow us to see the relevance @frigiht triangles that appearsditimes in the

hexad. Pl anckdés constant h plays an i mportant role here.

spin is given byh\/S(S+ 1 :h\/l/ 2(1/2 %) /=B /. Its magnitude and direction are remmeted by the red arrows

in thefigure belowFIG. 22 The two red arrows correspond to the two possible spin orientations of the electron. The arrow

that points upward and to the right reprasethe axis of the electron am the presence of the magnetieldi this arrow
processesboutthe zaxis[12]. Its projection about the-axis is fixed, having only the possible value#ofi / 2 (the factor

of 1/2 here authors thdescription of the electron as a spinehalf particle). In the picture above this corresponds to the
purple top. The arrow that points downward to the right represents the axis of the electmothamatésence of the magnetic

field in the zdirectionthis arrowprocesseabout the zaxis. Itsprojection about the-axis is fixed, having only the possible

value of- 72/ 2. In the picture above this corresponds to the blue top.

Sz

s

FIG. 22.Intrinsic spin angular momentumfor electron.

Now even though this picture is taken as representing the dynamical picture of an @extessingand spinning in and out

of the page in a magneticefd let us view just this crosgection as is pictured. Now consider the two triangles pictured with
17
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each of the red arrows corresponding to a hypotenuse, the projection of the spin aloagisheresenting the small side

of the triangle and the othprojection representing the intermediate side of thartgle. (From the Pythagoretireoremthe
magnitude of this other projection, p that is, the dotted line is given/éh/Z). It is impossible that the electron p can

have a magtude of the spin any other value that vaIuex&h / 2. 1t is impossible that its projection along thevds be
other thant 72/ 2 (remember the-axis represents aréction of a constant magnetielil applied inour laboratory about

which our electron is spinning anqtocessing It is impossible to increase the spin rate or decrease the spiRl@Gt@3.

That is a permanent feature of the electron. The lengths of the sides of the two treyiglsented aré / 2(\/1 \/E x/§

). The proportionsﬁ : \/5: x/gcorrespond precisely to the proportions of the lengths of the sides fof¢hgimilar right
triangles of the hexad. Using the ideal angles of the righigiés of the hexad, the two ilde angles of orientation are
+ (- 1=2) 85:3 degrees and ~ -1/24) 35:3-degrees, above and below the horizontal. Let us makedirisspondence

between the spin of the electron and the mound goration more vivid by using the pictures of the mounds themselves.

FIG. 23.Mound geometry and electron spinViking 35A72 (1976).

Here we see clearly the precise cep@ndence between the mound cgafation and the electronigp The short side DB in
this figure corresponds to the-axis projection in thepreviousfigure. The circle here in thifigure correspnds to the

processing red arrow in the previougtpre and the line AB in thiigure corresponds to the dotted line in theeyious

picture. The lengths B[BA, and AD have the respective ratios(a/i : \/E :\E). The blending of mound geometry and

guantum mechanics on the surface of Mars does not end here.

Consider the two equal legs DE and DA of the isosceles triangle picturdé@ in. Fhey eaclprocessabout what would be

the magnetic feld direction DB if we were speaking opeocessinglectron. In quantum mechanics when two spie one

half particles such as electrons or quarks combine their spins, they can add to an ovezatios{$+0) or spione (S=1).

When they corhine to spirzero, there is a net zero magnetism that is produced. However, when the spins combine to give a
total spin one (S=1), that gives the maximum composite magnetism. In that state the relative orientation of the two spins is

the same as that betere DE and DA, corresponding to an anglé 2 t=70:5 degree§l3]. In FIG. 24opening angle is
18
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represented by the angle between the two cones. The designatibrindicates that the net spin component about -#res

is zero. The upper blue arrow an@ fbowerprocessn opposite directions

FIG. 24. Composite spinl state for 2 spirone half particles

In thefigure below this is shown in the context dfetactual Cydonia mounds (tHagurei s r o 2 raldtive do thdigure

above). The twoindividual electrons correspond to the red arrows, giving rise to a total spin of magmlri_?xd@

corresponding to spin Qﬁh =\/S(S Ay \75(1 1) represented by both the length and the direction of the yellow

arrow. Note that the yellow Bw has a zero pregtion along the-axis in the fgure(along DB) corresponding to $#0.

The Pauli exclusion principle would forbid such a spire state between two electrons if they are in the same orbital. For
example, 2 electrons in the ground state of helium could only couple tsgjiveero not spin 1. But thisgfire does not
represetspin zero for which the two blue arrows would be antiparallel rather than at an angle of 7@8)(=So if this

were to represent some bound state involving two electrons this could only be possible if say one of the electrons is in a
ground state ahthe other is in another othl, say the fist excited state. The alternative is that one of the spin one half
particles is not an electron but a positron, or an@ettron. In thatasewe would have represented here a bound state of an
electron and positron corresponding to what is called triplet positronium or gmtisitronium. Symbolically it corresponds

to S. The designation triplet corresponds to the fact that the diagrams hexgpomd to only one of three difent states in
which the pgitronium atom could be found in. In the other two states, not represented by the Cydonits, the two blue
arrows would be circling around in just one of the cones, either the upper or the lower with the angle tretmeeeing
fixed again at 70%5-1G. 25
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FIG. 25.Composite spin state displayed by mounds; Viking 35A72 (1976).

There is a fourth composite spin state for the positronium system. In that state the total spin is zero (S=0). The 8flagram [1
representing it is given ithefigure belowin FIG. 26.

FIG. 26. Composite spin state for total spin zero

As the arrows in théigure indicates the two electron spins are in opposite directions so that thecapo® to zeroOne
precesses on the top cone and the other on the bottom cone. Strictly speaking if the mound geometry here were to represent .
spinzero composite, then line DE would point in the oppadiitection to line DA as in thégure above. However, there is

anindirect way in which the spimero composite is represented by the side EA. First note that the length of each spin vector

for each electron i9\/§/2. Thus, magnitude of the total length of the double arrovw(é. The angle that each of these

double
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